Sports Rehabilitation Treatment of Medical Information in Tertiary Hospitals Based on Computer Machine Learning

Author:

Ma Xiaojun1ORCID,Zhang Zhenfeng2ORCID

Affiliation:

1. School of Physical Education, South China University of Technology, Guangzhou 510640, Guangdong, China

2. Zhenzhou University of Aeronautics, Zhenzhou 450046, Hena, China

Abstract

Objective. The processing and analysis of medical rehabilitation information data in tertiary hospitals is a hot research topic. Combining medical data analysis with machine learning algorithms to improve data mining efficiency is a problem that needs to be solved at present. This paper proposes an autonomous perception model of sports medicine rehabilitation equipment based on a deep learning algorithm for sports medical rehabilitation data. Methods. This paper cites a deep learning multi-dimensional perception model for medical rehabilitation equipment autonomous perception. The model utilizes the automatic overhaul of medical rehabilitation equipment based on deep belief networks. This paper extracts features through a multi-layer neural network and obtains fault location results of medical rehabilitation equipment through softmax. Results. In similarity prediction, the accuracy rate of the first three kinds of feedback containing the target answer is 77%. The accuracy rate of the target answers included in the top five kinds of feedback was 92%. Conclusion. In this study, it is feasible to apply deep learning to the quality control information system of sports rehabilitation medical equipment. This improves the management efficiency of medical rehabilitation equipment to a certain extent.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3