A Self-Adjusting Search Domain Method-Based Genetic Algorithm for Solving Flexible Job Shop Scheduling Problem

Author:

Li Bin123ORCID,Xia Xuewen34ORCID

Affiliation:

1. College of Computer, Minnan Normal University, Zhangzhou 363000, China

2. Key Laboratory of Data Science and Intelligence Application, Minnan Normal University, Zhangzhou 363000, China

3. Key Lab of Intelligent Optimization and Information Processing, Minnan Normal University, Zhangzhou 363000, China

4. College of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, China

Abstract

As a nondeterministic polynomial (NP) problem, the flexible job shop scheduling problem (FJSP) is a difficult problem to be solved in terms of finding an acceptable solution. In last decades, genetic algorithm (GA) displays very promising performance in the field. In this article, a hybrid algorithm combining global and local search with reinitialization (GLRe)-based GA is proposed to minimize makespan for FJSP. The solution of FJSP is conveniently represented by a double-layer chromosome representation method, which is convenient for subsequent genetic operations, that is, sorting of operations and selection of machines. Two strategies of choosing the job with the most remaining operations (CRO) and 6-dimensional variable determined search position (6D-VSP) are proposed as two components for GA, which are applied to generate a population with superior quality and reduce the global search space during the initialization stage. At the same time, in order to prevent the loss of diversity during evolution, a reinitialization strategy is introduced in the later stage of evolution to adaptively adjust the search domain of the problem. Finally, two sets of benchmark data are tested. The experimental results demonstrate the accuracy and effectiveness of the GLRe proposed in this article for solving FJSP.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3