Low Altitude UAV Air-to-Ground Channel Measurement and Modeling in Semiurban Environments

Author:

Qiu Zhihong1ORCID,Chu Xi1ORCID,Calvo-Ramirez Cesar2,Briso César2,Yin Xuefeng1ORCID

Affiliation:

1. College of Electronics and Information Engineering, Tongji University, Shanghai 201804, China

2. School of Systems and Telecommunications Engineering, Technical University of Madrid, 28031 Madrid, Spain

Abstract

Small- and medium-sized unmanned aerial vehicles (UAVs) can fly for a short distance (<2 km) from a control station in a nonsegregated air space (altitudes < 100 m). It is of great interest to model the propagation channel under such condition, where there is an important influence from the environment. This paper presents multiple measurements carried out in low altitudes with a medium-sized UAV flying over a semiurban environment. Path loss exponent is given based on the measurements done at different altitudes and a height-dependent Rician K factor model is proposed. The results clearly reveal the existence of two propagation zones with very distinct channel characteristics. The breakpoint indicates the height where the condition of the channel changes rapidly. At low altitudes, the obstacles generate a large amount of multipath and the propagation is greatly affected, while at higher altitudes the influence mitigates. Our results are useful for the modeling of low altitude air-to-ground (AG) propagation channels and the performance analysis of UAV-enabling AG communication systems, such as the channel capacity and the throughput.

Funder

Ministerio de Economía y Competitividad

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3