Strong Scaling Analysis of a Parallel, Unstructured, Implicit Solver and the Influence of the Operating System Interference

Author:

Sahni Onkar1,Carothers Christopher D.2,Shephard Mark S.1,Jansen Kenneth E.1

Affiliation:

1. SCOREC, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY 12180, USA

2. Department of Computer Science, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY 12180, USA

Abstract

PHASTA falls under the category of high-performance scientific computation codes designed for solving partial differential equations (PDEs). Its a massively parallel unstructured, implicit solver with particular emphasis on fluid dynamics (CFD) applications. More specifically, PHASTA is a parallel, hierarchic, adaptive, stabilized, transient analysis code that effectively employs advanced anisotropic adaptive algorithms and numerical models of flow physics. In this paper, we first describe the parallelization of PHASTA's core algorithms for an implicit solve, where one of our key assumptions is that on a properly balanced supercomputer with appropriate attributes, PHASTA should continue to strongly scale on high core counts until the computational workload per core becomes insufficient and inter-processor communications start to dominate. We then present and analyze PHASTA's parallel performance across a variety of current near petascale systems, including IBM BG/L, IBM BG/P, Cray XT3, and custom Opteron based supercluster; this selection of systems with inherently different attributes covers a majority of potential candidates for upcoming petascale systems. On one hand, we achieve near perfect (linear) strong scaling out to 32,768 cores of IBM BG/L; showing that a system with desirable attributes will allow implicit solvers to strongly scale on high core counts (including petascale systems). On the contrary, we find that the relative tipping point for strong scaling fundamentally differs among current supercomputer systems. To understand the loss of scaling observed on a particular system (Opteron based supercluster) we analyze the performance and demonstrate that such a loss can be associated to an unbalance in a system attribute; specifically compute-node operating system (OS). In particular, PHASTA scales well to high core counts (up to 32,768 cores) during an implicit solve on systems with compute nodes using lightweight kernels (for example, IBM BG/L); however, we show that on a system where the compute node OS is more heavy weight (e.g., one with background processes) a loss in strong scaling is observed relatively at much fewer number of cores (4,096 cores).

Funder

National Science Foundation

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3