Stability Evaluation of Sliding-Type Perilous Rock in Huangzangsi Hydrojunction Project Based on Natural Vibration Frequency

Author:

Jia Yanchang1ORCID,Wang Luqi2ORCID,Jiang Tong1ORCID,Yin Yanli1,Liu Weinan3ORCID,Song Hongke3,Li Xiaogen1,Shi Sujiao4

Affiliation:

1. North China University of Water Resources and Electric Power, Zhengzhou 450046, China

2. School of Civil Engineering, Chongqing University, Chongqing 400045, China

3. Yellow River Engineering Consulting Co. Ltd., Zhengzhou 450003, China

4. Henan Province Map Academy, Zhengzhou 450000, China

Abstract

The instability of perilous rock is mostly manifested as sudden collapse and failure without obvious displacement characteristics. Therefore, it is difficult to achieve the purpose of monitoring and early warning by conventional displacement monitoring. But the existing stability monitoring indicators are mostly deformation, stress, and strain. There is a problem that the stability evaluation parameters are inconsistent with the monitoring parameters. Taking sliding-type perilous rock as the research object, the structural plane is assumed to be homogeneous and isotropic, and linear elastic deformation in the amplitude range. Based on the dynamic theory and limit equilibrium model, the quantitative relationship model can be established involving safety factors, natural vibration frequency, structural surface bonding area, elastic modulus, and mass. The remote laser vibrometer is used to monitor the natural vibration frequency of the sliding-type perilous rock on the slope of the Huangzangsi Hydrojunction, and the stability evaluation of the perilous rock is achieved based on the quantitative relationship model between the safety factor and the natural vibration frequency. In this way, the frequency of slipping perilous rock stability evaluation and safety factor can be monitored. The results are basically the same with the safety factor calculated by the limit equilibrium method, indicating that the method is correct and feasible. The research has high theoretical significance and practical value for the safety monitoring and advanced warning of sliding perilous rock.

Funder

Anhui Department of Education

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3