Kinetic Analysis of Aluminum Extraction from Ethiopian Kaolinite Using Hydrochloric Acid

Author:

Kassa Adamu Esubalew1ORCID,Shibeshi Nurelegne Tefera2ORCID,Tizazu Belachew Zegale1ORCID

Affiliation:

1. Department of Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia

2. School of Chemical and Bio-Engineering, Addis Ababa University, Addis Ababa, Ethiopia

Abstract

The aim of this study was kinetic investigations of aluminum extraction from Ethiopian kaolinite with hydrochloric acid. The effects of extraction parameters, namely, solid-to-liquid ratio (0.05, 0.075, 0.100, and 0.125 g·mL−1), acid concentrations (2, 3, 4, and 5 M), reaction temperature (50, 60, 70, and 80°C), and time (20, 40, 60, 80, 100, 120, 140, 160, and 180 min), on yield of aluminum were investigated. The results revealed that the extraction yield of aluminum increased with increase of acid concentration, reaction temperature, and time and declined with increase of solid-to-liquid ratio. The kinetic analysis of aluminum extraction was evaluated using pseudohomogeneous, nucleation growth (Avrami), and shrinking core models. The results showed that kinetics of aluminum extraction were controlled by surface chemical reaction. The experimental results were well fitted by the shrinking core model of surface chemical reaction with first-order rate. The activation energy and the preexponential factor were 25.40 kJ·mol−1 and 0.949 cm·min−1, respectively. The leached solution samples were crystallized using evaporation and concentrated hydrochloric acid pouring. The volume ratios of concentrated hydrochloric acid to the samples were from 0.30 to 0.90 (v/v). The crystallization efficiency of aluminum chloride hexahydrate crystals increased with volume of hydrochloric acid and crystallization time. The crystallization yield of aluminum chloride hexahydrate crystals reached 90%. This study’s results clearly revealed that Ethiopian kaolinite could be a promising raw material to produce aluminum chloride hexahydrate, which could be used for water treatment application.

Publisher

Hindawi Limited

Subject

General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3