Lipid Metabolism-Related Gene Signature Predicts Prognosis and Indicates Immune Microenvironment Infiltration in Advanced Gastric Cancer

Author:

He Lijian12ORCID,Ye Qiange1ORCID,Zhu Yanmei3ORCID,Zhong Wenqi4,Xu Guifang4,Wang Lei4,Wang Zhangding4ORCID,Zou Xiaoping145ORCID

Affiliation:

1. Department of Gastroenterology, Nanjing Drum Tower Hospital, School of Medicine, Jiangsu University, Nanjing, Jiangsu Province, China

2. Department of Gastroenterology, Tongling People’s Hospital, Tongling, Anhui Province, China

3. Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China

4. Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical, Nanjing, Jiangsu Province, China

5. Department of Gastroenterology, Affiliated Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China

Abstract

Objective. Abnormal lipid metabolism is known to influence the malignant behavior of gastric cancer. However, the underlying mechanism remains elusive. In this study, we comprehensively analyzed the biological significance of genes involved in lipid metabolism in advanced gastric cancer (AGC). Methods. We obtained gene expression profiles from The Cancer Genome Atlas (TCGA) database for early and advanced gastric cancer samples and performed differential expression analysis to identify specific lipid metabolism-related genes in AGC. We then used consensus cluster analysis to classify AGC patients into molecular subtypes based on lipid metabolism and constructed a diagnostic model using least absolute shrinkage and selection operator- (LASSO-) Cox regression analysis and Gene Set Enrichment Analysis (GSEA). We evaluated the discriminative ability and clinical significance of the model using the Kaplan-Meier (KM) curve, ROC curve, DCA curve, and nomogram. We also estimated immune levels based on immune microenvironment expression, immune checkpoints, and immune cell infiltration and obtained hub genes by weighted gene co-expression network analysis (WGCNA) of differential genes from the two molecular subtypes. Results. We identified 6 lipid metabolism genes that were associated with the prognosis of AGC and used consistent clustering to classify AGC patients into two subgroups with significantly different overall survival and immune microenvironment. Our risk model successfully classified patients in the training and validation sets into high-risk and low-risk groups. The high-risk score predicted poor prognosis and indicated low degree of immune infiltration. Subgroup analysis showed that the risk model was an independent predictor of prognosis in AGC. Furthermore, our results indicated that most chemotherapeutic agents are more effective for AGC patients in the low-risk group than in the high-risk group, and risk scores for AGC are strongly correlated with drug sensitivity. Finally, we performed qRT-PCR experiments to verify the relevant results. Conclusion. Our findings suggest that lipid metabolism-related genes play an important role in predicting the prognosis of AGC and regulating immune invasion. These results have important implications for the development of targeted therapies for AGC patients.

Funder

Nanjing Special Foundation for Health Science and Technology Development

Publisher

Hindawi Limited

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3