A Feeding Strategy in Inner L-Shape Ring Hot Rolling Process

Author:

Meng Wen12ORCID,Wang Feifan1ORCID,Guan Yanjin2ORCID

Affiliation:

1. Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China

2. Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, China

Abstract

In order to make the inner L-shape ring polling process with a closed die structure (ILRRCDS) on the top and bottom of the driven roll stable, at first, this paper established the mathematical model for ILRRCDS. Then, the plastic penetration and biting-in conditions for ILRRCDS were deduced based on plain ring rolling theory. Moreover, a feeding strategy that can realize a constant growth of the ring’s outer radius was proposed and the reasonable value ranges of the feed rate of the mandrel were determined. The numerical simulation model for ILRRCDS is established based on ABAQUS software. Finally, the equivalent plastic strain (PEEQ) and temperature distributions of rolled ring were obtained. The results indicated that the proposed feeding strategy can realize a stable ILRRCDS. At the end of ILRRCDS, the PEEQ at the inner radius surface of the ring is maximum, the PEEQ at the outer radius surface of the ring takes the second place, and the PEEQ at the middle part of ring is minimum. With the increase of rolling time, the higher temperature zone of the rolled ring gradually moves from the center part of the ring to the “inner corner zone” of the ring.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Position/force control method for profiled ring rolling process of large aluminum alloy ring;CIRP Journal of Manufacturing Science and Technology;2024-07

2. A rapid prediction method for geometric size in profiled ring rolling process;The International Journal of Advanced Manufacturing Technology;2024-02-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3