Design of a 25 MWe Solar Thermal Power Plant in Iran with Using Parabolic Trough Collectors and a Two-Tank Molten Salt Storage System

Author:

Kordmahaleh Aidin Alinezhad1ORCID,Naghashzadegan Mohammad2ORCID,Javaherdeh Kourosh2,Khoshgoftar Mohammadreza2

Affiliation:

1. Department of Intelligent Hydraulics and Automation, Tampere University of Technology, Tampere, Finland

2. Department of Mechanical Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran

Abstract

Nowadays, parabolic trough solar thermal plants are prevalent around the world. In different areas concerning the amount of solar radiation, their standard size is approximately between 20 and 100 MWe. Certainly, the right size of the solar field is the first selection with regard to nominal electrical power. A vast area will be economically unreasonable whereas a small area will mainly cause the power plant to operate at the part-load condition. This paper presents an economic modeling of a solar parabolic trough plant, operating at 25 MWe in Yazd, Iran. The varying types of collector dimensions have been investigated; then, by selecting autumnal equinox (22 September) at 12:00 PM as the design point, thermal performance of the solar power plant has been featured annually, in all conditions. The total operating time of the power plant is about 1726 hours (1248 hours in full-load condition). In the end, the effect of thermal storage tanks has been analyzed to save extra solar heat and use it at nights in hot months. By implementing a storage system, the total operating time will be increased to 3169 hours (2785 in full-load condition). Moreover, 7974 GJ useful thermal energy can be obtained from the solar field and storage system.

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3