A Multibody Model of Tilt-Rotor Aircraft Based on Kane’s Method

Author:

Su Jianmin1ORCID,Su Chengyue1ORCID,Xu Sheng1ORCID,Yang Xiaoxing2ORCID

Affiliation:

1. School of Physics and Optoelectronic Engineering, Guangdong University of Technology, No. 100, West Ring Road, University Town, Guangzhou, 510006, China

2. School of Data and Computer Science, Sun Yat-sen University, No. 132, Outer Ring Road East, University Town, Guangzhou, 510006, China

Abstract

A tilt-rotor aircraft can switch between two flight configurations (the helicopter configuration and the fixed-wing plane configuration) by tilting its rotors. In the process of rotor tilting, the nacelles which drive the rotors tilt together with the rotors. Because the mass of the nacelles cannot be ignored compared to the mass of the whole aircraft, the tilting of the nacelles is a coupling motion of the body and the nacelles. In order to better character the aircraft dynamics during the nacelle tilting, a multibody model is established in this paper. In this multibody model, Kane’s method is used to build a dynamic model of a tilt-rotor aircraft. The generalized rates are used to describe the movement of the body and the nacelles (with rotors). The generalized active forces and generalized inertial forces of both the body and the nacelles (with rotors) are obtained, respectively, and the first-order differential equations of the generalized rates are obtained. The longitudinal trim of the XV-15 aircraft is calculated according to the single-body model and our multibody model, in this paper, and the results verify the correctness of the multibody model. In the process of nacelle inclination angle command tracking, the multibody model can provide more information about the disturbance torque of the nacelle than the single-body model, and model inversion control based on the proposed multibody model can obtain a better tracking result than a PID control method only using nacelle angle feedback information.

Funder

Science and Technology Planning Project of Guangdong Province of China

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3