Biomarker Amplification by Serum Carrier Protein Binding

Author:

Mehta Arpita I.12,Ross Sally23,Lowenthal Mark S.2,Fusaro Vincent23,Fishman David A.4,Petricoin Emanuel F.2,Liotta Lance A.2

Affiliation:

1. NIH-Howard Hughes Research Scholar, Howard Hughes Medical Institute, Bethesda, MD 20814, USA

2. FDA-NCI Clinical Proteomics Program, Office of the Director, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA

3. FDA-NCI Clinical Proteomics Program, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA

4. National Ovarian Cancer Early Detection Program, Northwestern University Medical School, Chicago, IL 60611, USA

Abstract

Mass spectroscopic analysis of the low molecular mass (LMM) range of the serum/plasma proteome is a rapidly emerging frontier for biomarker discovery. This study examined the proportion of LMM biomarkers, which are bound to circulating carrier proteins. Mass spectroscopic analysis of human serum following molecular mass fractionation, demonstrated that the majority of LMM biomarkers exist bound to carrier proteins. Moreover, the pattern of LMM biomarkers bound specifically to albumin is distinct from those bound to non-albumin carriers. Prominent SELDI-TOF ionic species (m/z 6631.7043) identified to correlate with the presence of ovarian cancer were amplified by albumin capture. Several insights emerged: a) Accumulation of LMM biomarkers on circulating carrier proteins greatly amplifies the total serum/plasma concentration of the measurable biomarker, b) The total serum/plasma biomarker concentration is largely determined by the carrier protein clearance rate, not the unbound biomarker clearance rate itself, and c) Examination of the LMM species bound to a specific carrier protein may contain important diagnostic information. These findings shift the focus of biomarker detection to the carrier protein and its biomarker content.

Publisher

Hindawi Limited

Subject

Biochemistry (medical),Clinical Biochemistry,Genetics,Molecular Biology,General Medicine

Cited by 147 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3