Notoginseng Leaf Triterpenes Ameliorates OGD/R-Induced Neuronal Injury via SIRT1/2/3-Foxo3a-MnSOD/PGC-1α Signaling Pathways Mediated by the NAMPT-NAD Pathway

Author:

Xie Weijie12345ORCID,Zhu Ting12345,Zhou Ping12345,Xu Huibo6,Meng Xiangbao12345,Ding Tao6,Nan Fengwei12345,Sun Guibo12345ORCID,Sun Xiaobo12345ORCID

Affiliation:

1. Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China

2. Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China

3. Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China

4. Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China

5. Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Beijing 100193, China

6. Jilin Academy of Chinese Medicine, Changchun 130012, China

Abstract

Background. Cerebral ischemic stroke (CIS) is a common cerebrovascular disease whose main risks include necrosis, apoptosis, and cerebral infarction. But few therapeutic advances and prominent drugs seem to be of value for ischemic stroke in the clinic yet. In the previous study, notoginseng leaf triterpenes (PNGL) from Panax notoginseng stem and leaf have been confirmed to have neuroprotective effects against mitochondrial damages caused by cerebral ischemia in vivo. However, the potential mechanisms of mitochondrial protection have not been fully elaborated yet. Methods. The oxygen and glucose deprivation and reperfusion (OGD/R)-induced SH-SY5Y cells were adopted to explore the neuroprotective effects and the potential mechanisms of PNGL in vitro. Cellular cytotoxicity was measured by MTT, viable mitochondrial staining, and antioxidant marker detection in vitro.Mitochondrial functions were analyzed by ATP content measurement, MMP determination, ROS, NAD, and NADH kit in vitro. And the inhibitor FK866 was adopted to verify the regulation of PNGL on the target NAMPT and its key downstream. Results. In OGD/R models, treatment with PNGL strikingly alleviated ischemia injury, obviously preserved redox balance and excessive oxidative stress, inhibited mitochondrial damage, markedly alleviated energy metabolism dysfunction, improved neuronal mitochondrial functions, obviously reduced neuronal loss and apoptosis in vitro, and thus notedly raised neuronal survival under ischemia and hypoxia. Meanwhile, PNGL markedly increased the expression of nicotinamide phosphoribosyltransferase (NAMPT) in the ischemic regions and OGD/R-induced SH-SY5Y cells and regulated the downstream SIRT1/2-Foxo3a and SIRT1/3-MnSOD/PGC-1α pathways. And FK866 further verified that the protective effects of PNGL might be mediated by the NAMPT in vitro. Conclusions. The mitochondrial protective effects of PNGL are, at least partly, mediated via the NAMPT-NAD+ and its downstream SIRT1/2/3-Foxo3a-MnSOD/PGC-1α signaling pathways. PNGL, as a new drug candidate, has a pivotal role in mitochondrial homeostasis and energy metabolism therapy via NAMPT against OGD-induced SH-SY5Y cell injury.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3