Ellagic Acid Inhibits Trichophyton rubrum Growth via Affecting Ergosterol Biosynthesis and Apoptotic Induction

Author:

Li Zhi-Jian1,Abula Amima1,Abulizi Abudumijiti2,Wang Chun3,Dou Qin1,Maimaiti Youlidouzi1,Abudouaini Abudoujilili1,Huo Shi-Xia1ORCID,Aibai Silafu1ORCID

Affiliation:

1. Department of Toxicology Laboratory, Xinjiang Institute of Traditional Uyghur Medicine, Urumqi, Xinjiang 830049, China

2. State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China

3. College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang 830011, China

Abstract

Background. Trichophyton rubrum, among other dermatophytes, is a major causative agent for superficial dermatomycoses like onychomycosis and tinea pedis, especially among pediatric and geriatric populations. Ellagic acid (EA) and shikonin (SK) have been reported to have many bioactivities, including antifungal activity. However, the mechanism of EA and SK on Trichophyton rubrum has not yet been reported. Objectives. The purposes of this study were to evaluate the antifungal activities of EA and SK against Trichophyton rubrum and to illuminate the underlying action mechanisms. Methods. The effect of EA (64, 128, and 256 μg/mL) and SK (8, 4, and 2 μg/mL) on Trichophyton rubrum was investigated with different doses via detecting cell viability, ultrastructure with using a scanning electron microscope (SEM), cell apoptosis and necrosis by using the flow cytometry instrument technique (FCIT), and the ergosterol biosynthesis pathway-related fungal cell membrane key gene expressions in vitro. Results. SEM detection revealed that the T. rubrum cell surface was shrivelled, folded, and showed deformation and expansion, visible surface peeling, and broken hyphae, and cell contents overflowed after being treated with EA and SK; the cell apoptosis rate was significantly increased in dose-dependent manner after T. rubrum was treated with EA and SK; the qPCR results showed that mRNA expression of MEP4 and SUB1 was downregulated in EA- and SK-treated groups. Conclusions. Overall, our results revealed the underlying antifungal mechanism of EA and SK, which may be related to the destruction of the fungal cell membrane and inhibition of C14 demethylase and the catalytic rate of squalene cyclooxidase in the ergosterol biosynthesis pathway via downregulation of MEP4 and SUB1, suggesting that EA and SK have the potential to be developed further as a natural antifungal agent for clinical use.

Funder

Tianshan Innovation Team of Xinjiang Uygur Autonomous Region

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3