Using Deep Convolutional Neural Networks for Image-Based Diagnosis of Nutrient Deficiencies in Rice

Author:

Xu Zhe12ORCID,Guo Xi2,Zhu Anfan3,He Xiaolin3,Zhao Xiaomin2ORCID,Han Yi2,Subedi Roshan24

Affiliation:

1. College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China

2. Key Laboratory of Poyang Lake Watershed Agricultural Resources and Ecology of Jiangxi Province, Jiangxi Agricultural University, Nanchang 330045, China

3. Soil and Fertilization Technology Extension Station of Jiangxi Province, Nanchang 330045, China

4. Institute of Agriculture and Animal Science, Tribhuvan University, Kathmandu 00977, Nepal

Abstract

Symptoms of nutrient deficiencies in rice plants often appear on the leaves. The leaf color and shape, therefore, can be used to diagnose nutrient deficiencies in rice. Image classification is an efficient and fast approach for this diagnosis task. Deep convolutional neural networks (DCNNs) have been proven to be effective in image classification, but their use to identify nutrient deficiencies in rice has received little attention. In the present study, we explore the accuracy of different DCNNs for diagnosis of nutrient deficiencies in rice. A total of 1818 photographs of plant leaves were obtained via hydroponic experiments to cover full nutrition and 10 classes of nutrient deficiencies. The photographs were divided into training, validation, and test sets in a 3 : 1 : 1 ratio. Fine-tuning was performed to evaluate four state-of-the-art DCNNs: Inception-v3, ResNet with 50 layers, NasNet-Large, and DenseNet with 121 layers. All the DCNNs obtained validation and test accuracies of over 90%, with DenseNet121 performing best (validation accuracy = 98.62 ± 0.57%; test accuracy = 97.44 ± 0.57%). The performance of the DCNNs was validated by comparison to color feature with support vector machine and histogram of oriented gradient with support vector machine. This study demonstrates that DCNNs provide an effective approach to diagnose nutrient deficiencies in rice.

Funder

National Key R&D Program of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3