Affiliation:
1. School of Economics, Hangzhou Dianzi University, Hangzhou 310018, China
2. College of Science, Hangzhou Normal University, Hangzhou 310036, China
Abstract
Let X={Xi,i≥1} be a sequence of real valued random variables, S0=0 and Sk=∑i=1kXi (k≥1). Let σ={σ(x),x∈Z} be a sequence of real valued random variables which are independent of X’s. Denote by Kn=∑k=0nσ(⌊Sk⌋) (n≥0) Kesten-Spitzer random walk in random scenery, where ⌊a⌋ means the unique integer satisfying ⌊a⌋≤a<⌊a⌋+1. It is assumed that σ’s belong to the domain of attraction of a stable law with index 0<β<2. In this paper, by employing conditional argument, we investigate large deviation inequalities, some sufficient conditions for Chover-type laws of the iterated logarithm and the cluster set for random walk in random scenery Kn. The obtained results supplement to some corresponding results in the literature.
Funder
National Natural Science Foundation of China