Nutritional and Metabolomic Changes of Juvenile Farmed Abalone (Haliotis iris) in New Zealand

Author:

Bullon Natalia12ORCID,Seyfoddin Ali1,Dezfooli Seyedehsara Masoomi2,Young Tim2ORCID,Alfaro Andrea C.2ORCID

Affiliation:

1. Drug Delivery Research Group, School of Science, Auckland University of Technology, Auckland, New Zealand

2. Aquaculture Biotechnology Research Group, School of Science, Auckland University of Technology, Auckland, New Zealand

Abstract

Seasonal variations play a crucial role in the physiology, immune responses, and nutritional profile of aquatic animals. Unpredictable water temperature fluctuations, especially those caused by climate change, may negatively affect feed consumption and growth of cultured organisms, such as abalone. In addition, metabolic and nutritional changes across different seasons may have significant effects on aquaculture production. This study aimed to investigate biochemical and metabolic alterations in healthy abalone (Haliotis iris) during 1 year of grow out in a land-based farm in New Zealand. Proximate analyses were used to identify nutritional variations in whole animal tissues, and a gas chromatography–mass spectrometry-based metabolomics approach was used to identify metabolic changes in adductor muscle of abalone during different seasons in the 1-year sampling period. Results showed that protein content was higher in warmer months compared with colder months, whereas lipid, ash, and carbohydrate contents remained generally constant throughout the year. Metabolic profile fluctuations indicated higher amounts of glutamic acid, glutathione, methionine, lysine, serine, tyrosine, and glycine in January and March compared with October and July, indicating possible amino acid breakdown and collagen degradation due to warmer temperatures. Although the proximate analyses findings revealed no signs of nutritional deficiencies in abalone among seasons, the metabolic profiles suggested possible thermal stress during summer months. This study provides a foundation for further nutritional studies to optimise seasonal diets for farmed Haliotis iris and highlights the need to monitor thermal stress effects, especially during summer and/or heatwave events.

Funder

Ministry of Primary Industries

Publisher

Hindawi Limited

Subject

Aquatic Science

Reference71 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3