A Robust Two-Machine Flow-Shop Scheduling Model with Scenario-Dependent Processing Times

Author:

Hsu Chia-Lun1ORCID,Lin Win-Chin2ORCID,Duan Lini3,Liao Jan-Ray1,Wu Chin-Chia2ORCID,Chen Juin-Han4

Affiliation:

1. Department of Electrical Engineering, National Chung Hsing University, Taichung 40227, Taiwan

2. Department of Statistics, Feng Chia University, Taichung 40724, Taiwan

3. School of Economics & Management, Shenyang University of Chemical Technology, Shenyang 110142, China

4. Department of Industrial Engineering & Management, Cheng Shiu University, Kaohsiung 83347, Taiwan

Abstract

In many scheduling studies, researchers consider the processing times of jobs as constant numbers. This assumption sometimes is at odds with practical manufacturing process due to several sources of uncertainties arising from real-life situations. Examples are the changing working environments, machine breakdowns, tool quality variations and unavailability, and so on. In light of the phenomenon of scenario-dependent processing times existing in many applications, this paper proposes to incorporate scenario-dependent processing times into a two-machine flow-shop environment with the objective of minimizing the total completion time. The problem under consideration is never explored. To solve it, we first derive a lower bound and two optimality properties to enhance the searching efficiency of a branch-and-bound method. Then, we propose 12 simple heuristics and their corresponding counterparts improved by a pairwise interchange method. Furthermore, we set proposed 12 simple heuristics as the 12 initial seeds to design 12 variants of a cloud theory-based simulated annealing (CSA) algorithm. Finally, we conduct simulations and report the performances of the proposed branch-and-bound method, the 12 heuristics, and the 12 variants of CSA algorithm.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Hindawi Limited

Subject

Modelling and Simulation

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3