Affiliation:
1. Department of Information Technology, Hainan Medical University, Haikou 571199, China
2. Cardiac Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing 100037, China
Abstract
Fibrotic remodeling, characterized by fibroblast phenotype switching, is often associated with atrial fibrillation and heart failure. This study aimed to investigate the effects on electrotonic myofibroblast-myocyte (Mfb-M) coupling on cardiac myocytes excitability and repolarization of the voltage-gated sodium channels (VGSCs) and single mechanogated channels (MGCs) in human atrial Mfbs. Mathematical modeling was developed from a combination of (1) models of the human atrial myocyte (including the stretch activated ion channel current,ISAC) and Mfb and (2) our formulation of currents through VGSCs (INa_Mfb) and MGCs (IMGC_Mfb) based upon experimental findings. The effects of changes in the intercellular coupling conductance, the number of coupled Mfbs, and the basic cycle length on the myocyte action potential were simulated. The results demonstrated that the integration ofISAC,INa_Mfb, andIMGC_Mfbreduced the amplitude of the myocyte membrane potential(Vmax)and the action potential duration (APD), increased the depolarization of the resting myocyte membrane potential(Vrest), and made it easy to trigger spontaneous excitement in myocytes. For Mfbs, significant electrotonic depolarizations were exhibited with the addition ofINa_MfbandIMGC_Mfb. Our results indicated thatISAC,INa_Mfb, andIMGC_Mfbsignificantly influenced myocytes and Mfbs properties and should be considered in future cardiac pathological mathematical modeling.
Funder
National Natural Science Foundation of China
Subject
Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,General Medicine
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献