Deep Learning for the Classification of Genomic Signals

Author:

Morales J. Alejandro1ORCID,Saldaña Román1ORCID,Santana-Castolo Manuel H.1ORCID,Torres-Cerna Carlos E.1,Borrayo Ernesto2ORCID,Mendizabal-Ruiz Adriana P.3,Vélez-Pérez Hugo A.1,Mendizabal-Ruiz Gerardo1ORCID

Affiliation:

1. Departamento de Ciencias Computacionales, Universidad de Guadalajara, Guadalajara, Mexico

2. Departamento de Electrónica, Universidad de Guadalajara, Guadalajara, Mexico

3. Departamento de Farmacobiología, Universidad de Guadalajara, Guadalajara, Mexico

Abstract

Genomic signal processing (GSP) is based on the use of digital signal processing methods for the analysis of genomic data. Convolutional neural networks (CNN) are the state-of-the-art machine learning classifiers that have been widely applied to solve complex problems successfully. In this paper, we present a deep learning architecture and a method for the classification of three different functional genome types: coding regions (CDS), long noncoding regions (LNC), and pseudogenes (PSD) in genomic data, based on the use of GSP methods to convert the nucleotide sequence into a graphical representation of the information contained in it. The obtained accuracy scores of 83% and 84% when classifying between CDS vs. LNC and CDS vs. PSD, respectively, indicate the feasibility of employing this methodology for the classification of these types of sequences. The model was not able to differentiate from PSD and LNC. Our results indicate the feasibility of employing CNN with GSP for the classification of these types of DNA data.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Study to Classify Virus Genome Through Analyzing DNA Sequences Using Transformer Model;2024 6th International Conference on Electrical Engineering and Information & Communication Technology (ICEEICT);2024-05-02

2. BioDeepfuse: a hybrid deep learning approach with integrated feature extraction techniques for enhanced non-coding RNA classification;RNA Biology;2024-03-25

3. Deep Learning for the Classification of Pseudogenes in the Genome;2023 IEEE 21st Student Conference on Research and Development (SCOReD);2023-12-13

4. New proposal of viral genome representation applied in the classification of SARS-CoV-2 with deep learning;BMC Bioinformatics;2023-03-11

5. SARS-CoV-2 virus classification based on stacked sparse autoencoder;Computational and Structural Biotechnology Journal;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3