Publishing Triangle Counting Histogram in Social Networks Based on Differential Privacy

Author:

Lv Tianzi12ORCID,Li Huanzhou12,Tang Zhangguo12,Fu Fangzhou12,Cao Jian12,Zhang Jian12ORCID

Affiliation:

1. School of Physics and Electronic Engineering, Sichuan Normal University, Chengdu, Sichuan 610066, China

2. Institute of Computer Network and Communication Technology, Sichuan Normal University, Chengdu, Sichuan 610066, China

Abstract

The continuous expansion of the number and scale of social networking sites has led to an explosive growth of social network data. Mining and analyzing social network data can bring huge economic value and social benefits, but it will result in privacy leakage and other issues. The research focus of social network data publishing is to publish available data while ensuring privacy. Aiming at the problem of low data availability of social network node triangle counting publishing under differential privacy, this paper proposes a privacy protection method of edge triangle counting. First, an edge-removal projection algorithm TSER based on edge triangle count sorting is proposed to obtain the upper bound of sensitivity. Then, two edge triangle count histogram publishing methods satisfying edge difference privacy are given based on the TSER algorithm. Finally, experimental results show that compared with the existing algorithms, the TSER algorithm can retain more triangles in the original graph, reduce the error between the published data and the original data, and improve the published data availability.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Reference33 articles.

1. A Survey on Privacy Issues in Mobile Social Networks

2. Differentially Private Data Publishing and Analysis: A Survey

3. Privacy Preserving Social Network Data Publication

4. Differential privacy protection technology and its application in big data environment;Y. Fu;Journal on Communications,2019

5. k-ANONYMITY: A MODEL FOR PROTECTING PRIVACY

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3