Binding Investigation of Some Important Metal Ions Copper (I), Nickel (II), and Aluminium (III) with Bovine Serum Albumin Using Valid Spectroscopic Techniques

Author:

Alhazmi Hassan A.123ORCID,Alam Md Shamsher1ORCID,Albratty Mohammed1ORCID,Najmi Asim1ORCID,Abdulhaq Ahmed A.4ORCID,Hassani Rym5ORCID,Ahsan Waquar1ORCID,Qramish Abdulrahman N.6ORCID

Affiliation:

1. Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P. Box No. 114, Jazan, Saudi Arabia

2. Substance Abuse and Toxicology Research Centre, Jazan University, P. Box No. 114, Jazan, Saudi Arabia

3. Medical Research Center, Jazan University, Jazan, Saudi Arabia

4. Medical Laboratory Technology Department, College of Applied Medical Science, Jazan University, Jazan, Saudi Arabia

5. Nursing Department, University College of Sabya, Jazan University, Saudi Arabia

6. College of Pharmacy, Jazan University, P. Box No. 114, Jazan, Saudi Arabia

Abstract

Studies based on the interaction of metals with proteins resulted in the development of promising metal-based compounds with encouraging medicinal potential. This study was aimed to utilize FT-IR and UV-Vis spectroscopic techniques to analyze the interactions of biologically significant metal ions, such as Al3+, Ni+2, and Cu+, with bovine serum albumin (BSA). Different concentrations of metal ions were interacted with BSA, and the complexes were analyzed using the two techniques. The change in the BSA secondary structure components such as β-sheet, β-antiparallel, α-helix, β-turn, and random coil were analyzed using second derivative resolution enhancement. The FT-IR spectroscopy suggested a marked decrease in the C=O stretching (corresponding to amide I) and C=N stretching (corresponding to amide II) intensities. Interestingly, upon complexation, a marked reduction (22.58–29.03%) in the α-helical component was observed with a considerable increase in the random coil component. The intensity of the absorption peak of BSA obtained using UV was observed to increase consecutively as the concentration of Cu+, Al3+, and Ni2+ ions increased. The binding constants for the BSA-Cu+, BSA-Ni+2, and BSA-Al+3 complexes were calculated to be 3.46 × 104 M−1, 1.28 × 104 M−1, and 2.08 × 104 M−1, respectively. It was concluded that the binding interaction decreased in the order Cu+ > Al3+ > Ni2+. These findings were similar to our previous findings using affinity capillary electrophoresis (ACE). Therefore, it can be inferred that the FT-IR and UV techniques might be utilised effectively to assess the metal-protein interaction and can have wide application in routine analysis. These techniques have several advantages in being simple, easy-to-perform, rapid, and affordable over other high-end techniques.

Funder

Ministry of Education – Kingdom of Saudi Arabia

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3