Complex Dynamical Behaviors of a Fractional-Order System Based on a Locally Active Memristor

Author:

Yu Yajuan1,Bao Han2ORCID,Shi Min3ORCID,Bao Bocheng4ORCID,Chen Yangquan5ORCID,Chen Mo4ORCID

Affiliation:

1. Aliyun School of Big Data, Changzhou University, Changzhou 213164, China

2. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

3. Institute of Advanced Technology, Nanjing University of Posts and Telecommunications, Nanjing 210042, China

4. School of Information Science and Engineering, Changzhou University, Changzhou 213164, China

5. Mechatronics, Embedded Systems and Automation Lab, School of Engineering, University of California, Merced, Merced, CA 95343, USA

Abstract

A fractional-order locally active memristor is proposed in this paper. When driven by a bipolar periodic signal, the generated hysteresis loop with two intersections is pinched at the origin. The area of the hysteresis loop changes with the fractional order. Based on the fractional-order locally active memristor, a fractional-order memristive system is constructed. The stability analysis is carried out and the stability conditions for three equilibria are listed. The expression of the fractional order related to Hopf bifurcation is given. The complex dynamical behaviors of Hopf bifurcation, period-doubling bifurcation, bistability and chaos are shown numerically. Furthermore, the bistability behaviors of the different fractional order are validated by the attraction basins in the initial value plane. As an alternative to validating our results, the fractional-order memristive system is implemented by utilizing Simulink of MATLAB. The research results clarify that the complex dynamical behaviors are attributed to two facts: one is the fractional order that affects the stability of the equilibria, and the other is the local activeness of the fractional-order memristor.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3