Physical Absorption of Folic Acid and Chitosan on Dihydroartemisinin-Loaded Poly-Lactic-Co-Glycolic Acid Nanoparticles via Electrostatic Interaction for Their Enhanced Uptake and Anticancer Effect

Author:

Nguyen Chien Ngoc12ORCID,Tran Bao Ngoc1,Thi Hoa Nguyen3,Huu Phong Pham4,Thi Huong Nguyen5

Affiliation:

1. Department of Pharmaceutical Industry, Hanoi University of Pharmacy, Hanoi, Vietnam

2. National Institute of Pharmaceutical Technology, Hanoi University of Pharmacy, Hanoi, Vietnam

3. K68 Student, Hanoi University of Pharmacy, Hanoi, Vietnam

4. Department of Pharmaceutics, Hai Duong Central College of Pharmacy, Hai Duong, Vietnam

5. Rectorial Board, Hai Duong Central College of Pharmacy, Hai Duong, Vietnam

Abstract

In this study, dihydroartemisinin (DAR), an anticancer agent with low toxicity, was loaded into poly-lactic-co-glycolic acid (PLGA) nanoparticles. The obtained PLGA cores were then coated with chitosan (CS) and/or folic acid (FA) by electrostatic interactions to enhance their anticancer and cellular uptake properties. DAR-loaded PLGA nanoparticles were prepared by the solvent evaporation method. CS and FA solutions at different ratios were dispersed concurrently into the PLGA suspension to facilitate electrostatic interactions and form nanosuspensions. The physiochemical properties of nanoparticles such as average particle size (Z), polydispersity index (PDI), zeta potential (ZP), TEM image, X-ray diffraction, and encapsulation efficiency were determined. We then determined the role of FA and CS coating on the nanoparticle surface in cytotoxicity, cellular uptake, and apoptosis. We show that the resultant nanoparticles were spherical and uniform, with a coating layer containing FA and CS covering PLGA cores with a Z of 223.5±4.28nm, PDI of 0.209±0.03, and ZP of 15.75±1.3mV. Both FA and CS improved the cytotoxicity of nanoparticles compared to free DAR and PLGA nanoparticles in HL-60 and KB cancer cell lines. Further, FA enhanced the cellular uptake of nanoparticles to a greater extent than CS. However, CS contributed more to apoptosis induction than FA.

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3