Characteristics of DSSC Panels with Silicone Encapsulant

Author:

Kang Jun-Gu1,Kim Jin-Hee2,Jang Han-Bin3,Kim Jun-Tae4

Affiliation:

1. Graduate School, Department of Architectural Engineering, Kongju National University, 275 Budae-dong, Cheonan, Chungnam 330-717, Republic of Korea

2. Green Home Energy Technology Research Center, Kongju National University, 275 Budae-dong, Cheonan, Chungnam 330-717, Republic of Korea

3. Graduate School, Department of Energy System Engineering, Kongju National University, 275 Budae-dong, Cheonan, Chungnam 330-717, Republic of Korea

4. Department of Architectural Engineering, Kongju National University, 275 Budae-dong, Cheonan, Chungnam 330-717, Republic of Korea

Abstract

Dye-sensitized solar cells (DSSC) allow light transmission and the application of various colors that make them especially suitable for building-integrated PV (BIPV) application. In order to apply DSSC modules to windows, the module has to be panelized: a DSSC module should be protected with toughened glass on the entire surface. Up to the present, it seems to be common to use double glazing with DSSC modules, with air gaps between the glass pane and the DSSC modules. Few studies have been conducted on the characteristics of various glazing methods with DSSC modules. This paper proposes a paneling method that uses silicone encapsulant, analyzing the performance through experimentation. Compared to a multilayered DSSC panel with an air gap, the encapsulant-applied panel showed 6% higher light transmittance and 7% higher electrical efficiency. The encapsulant also prevented electrolyte leakage by strengthening the seals in the DSSC module.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3