Preliminary Results of Marine Electromagnetic Sounding with a Powerful, Remote Source in Kola Bay off the Barents Sea

Author:

Grigoryev Valery1,Korotaev Sergey23,Kruglyakov Mikhail34,Orekhova Darya3,Scshors Yury3,Tereshchenko Evgeniy1,Tereshchenko Pavel5,Trofimov Igor2

Affiliation:

1. Kola Science Centre, Polar Geophysical Institute, Russian Academy of Science, Murmansk, 15 Khalturina Street, Murmansk 183010, Russia

2. Geoelectromagnetic Research Centre of Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, P.O. Box 30, Troitsk, Moscow Region 142190, Russia

3. Kurchatov Institute, Moscow, 1 Akademika Kurchatova Square, Moscow 123182, Russia

4. Moscow State University, Moscow, GSP-1 Leninskie Gory, Moscow 119991, Russia

5. Institute of Terrestrial Magnetism, Ionosphere, and Radiowave Propagation, Russian Academy of Sciences, St. Petersburg Branch, 1 Mendeleevskaya Linia, St. Petersburg 199034, Russia

Abstract

We present an experiment conducted in Kola Bay off the Barents Sea in which new, six-component electromagnetic seafloor receivers were tested. Signals from a powerful, remote super-long wave (SLW) transmitter at several frequencies on the order of tens Hz were recorded at the six sites along a profile across Kola Bay. In spite of the fact that, for technical reasons, not all the components were successfully recorded at every site, the quality of the experimental data was quite satisfactory. The experiment resulted in the successful simulation of an electromagnetic field by the integral equation method. An initial geoelectric model reflecting the main features of the regional geology produced field values that differed greatly from the experimental ones. However, step-by-step modification of the original model considerably improved the fit of the fields. Thereby specific features of the regional geology, in particular the fault tectonics, were able to be corrected. These preliminary results open the possibility of inverse problem solving with more reliable geological conclusions.

Funder

Russian Foundation for Basic Research

Publisher

Hindawi Limited

Subject

Geophysics,Water Science and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3