Prediction-Based Resource Deployment and Task Scheduling in Edge-Cloud Collaborative Computing

Author:

Su Mingfeng12ORCID,Wang Guojun3ORCID,Choo Kim-Kwang Raymond4ORCID

Affiliation:

1. School of Computer Science and Engineering, Central South University, Changsha 410083, China

2. School of Business Information Technology, Hunan Vocational College of Commerce, Changsha 410205, China

3. School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou 510006, China

4. Department of Information Systems and Cyber Security, University Texas San Antonio, San Antonio, TX 78249, USA

Abstract

Edge computing is becoming increasingly commonplace, as consumer devices become more computationally capable and network connectivity improves (e.g., due to 5G). With the rapid development of edge computing and Internet of Things (IoT), the use of edge-cloud collaborative computing to provide service-oriented network application (i.e., task) in edge-cloud IoT has become an important research topic. In this paper, we present an edge-cloud collaborative computing framework and our resource deployment algorithm with task prediction (RDAP). Based on our paradigm, tasks in the cloud service center are predicted using the two-dimensional time series, and task classification aggregation and delay threshold determination are combined to optimize task resource deployment of edge servers. A task scheduling algorithm with Pareto improvement (TSAP) is also proposed. At the edge servers, the Pareto progressive comparison is conducted in two stages to obtain the tangent point or any intersection point of the two objective curves of user’s quality of service and effect of system service to optimize task scheduling. The experimental results show that for varying user task scales and different Zipf distribution α parameters, combining RDAP and TSAP (RDAP-TSAP) can improve the average user task hit rate. In addition, the average task completion time of users, the overall system service effect, and the total task delay rate of RDAP-TSAP are better than TSAP and the benchmark algorithms for task scheduling.

Funder

Fundamental Research Funds for the Central Universities of Central South University

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3