Strength Model of Cemented Filling Body Based on a Neural Network Algorithm

Author:

Deng Daiqiang12ORCID,Liang Yihua3ORCID,Cao Guodong1ORCID,Fan Jinkuan1ORCID

Affiliation:

1. College of Civil Engineering and Mechanics, Xiangtan University, Xiangtan 411105, China

2. College of Mining Engineering, Guizhou Institute of Technology, Guiyang, Guizhou 550003, China

3. Industrial Development Research Center of Guizhou, Guizhou Institute of Technology, Guiyang, Guizhou 550003, China

Abstract

As one of the key measures for comprehensive management of goaf in various mines, filling mining has been recognized by practitioners in recent years due to its functions (e.g., resource utilization of solid waste and thorough goaf treatment). The performance of the filling material is the core challenge of filling mining, and it is influenced by the settling speed, conveying characteristics, and filling body strength. To understand the strength characteristics of a cemented filling body composed of medium-fine tailings, in this study, filling material ratio tests under different content of cement, tailings, and water were conducted. A backpropagation (BP) neural network topology structure was established in this study. The strength after different curing times was used as the output variable to analyze the impact of the cement, tailings, and water content on the filling body. A 3-Hn-3 structural model was employed. When the number of hidden layers Hn was 7, the model achieved the best learning and training effect. The results show that the predicted value, which is close to the measured value (fitting accuracy of 92.43–99.92%; average error of 0.0792–7.5682%), satisfies the engineering requirements. The neural network model can be employed to predict the filling body’s strength and provide a good reference to analyze the change law in the filling body’s strength.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3