Association between Single-Nucleotide Polymorphism in MicroRNA Target Site of DDB2 and Risk of Hepatocellular Carcinoma in a Southern Chinese Population

Author:

Qiu Moqin12,Liu Yingchun1,Zhou Zihan12,Jiang Yanji12,Lin Qiuling12,Huo Rongrui1,Liang Xiumei1,Yu Xiangyuan34ORCID,Zhou Xianguo1ORCID,Yu Hongping12ORCID

Affiliation:

1. Guangxi Medical University Cancer Hospital, Nanning 530021, China

2. School of Public Health, Guangxi Medical University, Nanning 530021, China

3. Affiliated Hospital of Guilin Medical University, Guilin 541004, China

4. School of Public Health, Guilin Medical University, Guilin 541004, China

Abstract

Damage-specific DNA-binding protein 2 (DDB2) is a DNA repair protein mainly involved in nucleotide excision repair, which plays a pivotal role in maintaining genomic stability. In this study, we evaluated the association of single-nucleotide polymorphism (SNP) rs1050244 in miRNA target site of DDB2 gene with risk of hepatocellular carcinoma (HCC) among 1073 HCC patients and 1119 cancer-free controls in a southern Chinese population. Our results showed that no statistically significant association was found between DDB2 rs1050244 and HCC risk. In further analysis stratified by age, sex, smoking, alcohol drinking, and HBV infection status, we found that individuals carrying the CT/TT genotypes of SNP rs1050244 had a significantly decreased risk of HCC compared with those with the CC genotype among non-HBV infected population (adjusted OR = 0.31, 95% CI = 0.13–0.72), and a significant interaction was found between this SNP and HBV infection (Pinteraction=0.002). Our results suggested that the DDB2 rs1050244 C>T polymorphism was associated with the decreased risk of HCC among non-HBV infected population. Further studies with larger sample sizes are needed to validate our findings.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3