The Effect of High Loaded Multiwall Carbon Nanotubes in Natural Rubber and Their Nonlinear Material Constants

Author:

Elango Natarajan1ORCID,Gupta N. Srinivasa2,Lih Jiun Yu1,Golshahr Alireza1

Affiliation:

1. Faculty of Engineering, UCSI University, 56000 Kuala Lumpur, Malaysia

2. School of Mechanical Engineering, VIT University, Vellore, India

Abstract

The aim of this paper is to study the high load of multiwall carbon nanotubes (MWCNTs) in natural rubber (NR) matrix. Firstly, the rubber matrix, fillers, and crosslinker are thoroughly mixed together in two-roll mill. Rheological tests are done from which scorch time, cure time, and cure index are estimated. The kneaded mixer is then compression molded, dumb bell samples as per ASTM D412 are prepared, and tensile strength, tensile modulus, elongation at break, and hardness are measured. It is noticed that NR/30% MWCNT has shown the highest tensile strength of 23.38 MPa and Shore A hardness of 90, which is 78.18% and 91.5%, respectively, higher than the unfilled NR. The increase in strength and hardness, the ductility loss, and decrease in elongation at break are observed upon increase in filler. FTIR, SEM, and AFM examinations are done and the results show high dispersion of nanofillers and strong interfacial interaction with rubber, which is responsible for overall enhancement in mechanical properties of the nanocomposites. Furthermore, the nonlinear material constants are evaluated through extended tube model and corresponding nonlinear material constants of different filler compositions are presented for the designers to use them in their component design and analysis.

Funder

UCSI University, Malaysia

Publisher

Hindawi Limited

Subject

General Materials Science

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3