Damage Characteristics of Coated Cylindrical Shells Subjected to Underwater Contact Explosion

Author:

Zhang Zhi-fan1,Ming Fu-ren1,Zhang A-man1

Affiliation:

1. College of Shipbuilding and Ocean Engineering, Harbin Engineering University, No. 145, Nantong Street, Nangang District, Harbin, Heilongjiang 150001, China

Abstract

It is of great significance for the protective design of submarine to study the influences of coverings on the damage characteristics of single and double cylindrical shells subjected to underwater contact explosions. The SPH models of single and double cylindrical shells coated with foam silicone rubber are established to analyze shockwave propagation, damage characteristics, and elastoplastic responses, which provides reasonable parameters of covering position and thickness. The results can be concluded as follows: the superposition of multiple waves may cause the inhomogeneity and discontinuity; for the single cylindrical shell with inner or outer coverings, the damage mode is mainly tensile and shear failure is caused by detonation waves and detonation products; compared with out-covering approach, the in-covering approach has better antishock performance; the best protective effect comes out when the thickness of covering is close to that of the shell; as for the double cylindrical shell without interlayer water, the destruction of inner shell mainly results from the puncture of high-speed fragments from the outer shell, so for the outer shell, out-covering is a better choice; however, since the interlayer water is very effective in protecting the inner shell, in-covering will be better for the inner shell.

Funder

Excellent Young Scientists Fund

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3