Elucidation of Underlying Mechanisms by Which Millettia macrophylla Benth Induces Its Estrogenic Activity

Author:

Zingue Stéphane12,Magne Nde Chantal Beatrice3,Clyne Colin3ORCID,Njamen Dieudonné2

Affiliation:

1. Laboratory of Physiology, Department of Life and Earth Sciences, Higher Teachers’ Training College, University of Maroua, P.O. Box 55, Maroua, Cameroon

2. Laboratory of Animal Physiology, Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon

3. MIMR-PHI Institute of Medical Research, Departments of Molecular and Translational Sciences, Monash University, 246 Clayton Road, Level 4, VIC 3168, Melbourne, Australia

Abstract

Millettia macrophylla is used traditionally to treat menopause related symptoms. This plant was shown to exhibit estrogenic effects in vitro on human embryonic kidney cells and in vivo on ovariectomized rats. The present study aimed at elucidating underlying mechanisms by which M. macrophylla induced its estrogenic effects. To accomplish our goal, kidney Hek293T cells transiently transfected with estrogen alpha or beta receptor expression plasmids were cotreated with a pure antiestrogen ICI 182,780 and the dichloromethane or methanol soluble fractions of M. macrophylla. To follow up, we cotreated ovariectomized rats with both extracts and ICI 182,780 for 3 days in the classical uterotrophic assay. Animals were then sacrificed and the uterine wet weight, total protein levels in uteri, uterine, and vaginal epithelial heights, and mammary gland were assessed. In vitro, the results suggested that the induction of the estrogenic activity by M. macrophylla is due to the binding of its secondary metabolites to ERα and ERβ. In vivo, the cotreatment of extracts and ICI 182,780 significantly abrogated the biological responses induced by the extracts alone. Taken together, these results indicate that the active principles of M. macrophylla induce their beneficial effects on menopausal symptoms by activating the ERs.

Publisher

Hindawi Limited

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3