Computing Edge Weights of Magic Labeling on Rooted Products of Graphs

Author:

Liu Jia-Bao12ORCID,Afzal Hafiz Usman3,Javaid Muhammad3ORCID

Affiliation:

1. School of Finance and Mathematics, Huainan Normal University, Huainan 232038, China

2. School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, China

3. Department of Mathematics, School of Science, University of Management and Technology, Lahore 54770, Pakistan

Abstract

Labeling of graphs with numbers is being explored nowadays due to its diverse range of applications in the fields of civil, software, electrical, and network engineering. For example, in network engineering, any systems interconnected in a network can be converted into a graph and specific numeric labels assigned to the converted graph under certain rules help us in the regulation of data traffic, connectivity, and bandwidth as well as in coding/decoding of signals. Especially, both antimagic and magic graphs serve as models for surveillance or security systems in urban planning. In 1998, Enomoto et al. introduced the notion of super a,0 edge-antimagic labeling of graphs. In this article, we shall compute super a,0 edge-antimagic labeling of the rooted product of Pn and the complete bipartite graph K2,m combined with the union of path, copies of paths, and the star. We shall also compute a super a,0 edge-antimagic labeling of rooted product of Pn with a special type of pancyclic graphs. The labeling provided here will also serve as super a,2 edge-antimagic labeling of the aforesaid graphs. All the structures discussed in this article are planar. Moreover, our findings have also been illustrated with examples and summarized in the form of a table and 3D plots.

Funder

China Postdoctoral Science Foundation

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3