Elastic Analysis for Rotating Functionally Graded Annular Disk with Exponentially-Varying Profile and Properties

Author:

Lin Wen-Feng1ORCID

Affiliation:

1. College of Mechanical and Automotive Engineering, Zhaoqing University, Zhaoqing, Guangdong, China

Abstract

Functionally graded materials have been widely used in engineering and human health applications. The issues about mechanical behavior of functionally graded material have received considerable attention. However, because of the complexity of material property, geometric profile, and mechanical load, there is still lack of proper analytic solutions about deformation and stress in many articles. The principal goal of this research is to study the effect of mechanical load on deformation and stress in rotating thin-walled functionally gradient material annular disk with exponentially-varying profile and properties. The inner and outer surfaces of annular disk are subjected to different pressures simultaneously. For this purpose, the infinitesimal theory of elasticity and axisymmetric plane stress assumptions has been proposed to formulate the governing equation. The governing equation is a generalized confluent hypergeometric differential equation, based on Whittaker’s functions; this is the first time that closed-form solutions of mechanical behaviors are revealed about proposed functionally gradient material model. Besides, another four boundary conditions are also discussed, i.e., the inner and outer surfaces of the annular disk are considered to be the combinations of free and clamped conditions. Numeric examples of two different functionally graded material properties are given to demonstrate displacement and stress solutions. Moreover, uniform disks made of homogeneous material under different boundary conditions are investigated, which are special cases of the proposed rotating functionally gradient material disks. Finally, some conclusions are made at the end of the present paper.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3