Bayesian Regularization Backpropagation Neural Network for Glass Beams in Lateral–Torsional Buckling

Author:

Hussain Saddam1ORCID,Bedon Chiara2ORCID,Kumar Gaurav1ORCID,Ahmed Zaheer3

Affiliation:

1. Graduate School of Engineering, Kyushu Institute of Technology, Kitakyushu, Fukuoka 804-8550, Japan

2. Department of Engineering and Architecture, University of Trieste, Via Valerio 6/1, 34127, Trieste, Italy

3. Department of Civil Engineering, Khawaja Fareed University of Engineering and Information Technology, 64200, Rahim Yar Khan, Pakistan

Abstract

The lateral–torsional buckling (LTB) performance assessment of laminated glass (LG) beams is a remarkably critical issue because—among others—it can involve major consequences in terms of structural safety. Knowledge of LTB load-bearing capacity (in terms of critical buckling load Fcr and corresponding lateral displacement dLT), in this regard, is, thus, a primary step for more elaborated design considerations. The present study examines how machine learning (ML) techniques can be used to predict the response of laterally unrestrained LG beams in LTB. The potential and accuracy of artificial neural networks (ANN), based on ML methods, are addressed based on validation toward literature data. In particular, to detect the best-performing data-driven ML model, the load-bearing capacity of LG beams (i.e., Fcr and dLT) is set as output response, while geometric properties (length, width, thickness) and material features (for glass and interlayers) are used as input variables. A major advantage is taken from a literature database of 540 experiments and simulations carried out on two-ply LG beams in LTB setup. To determine the best-performing ANN model, different strategies are considered and compared. Additionally, the Bayesian regularization backpropagation (trainbr) algorithm is used to optimize the input–output relationship accuracy. The suitability of present modeling strategy for LG beams in LTB is quantitatively discussed based on error and performance trends.

Funder

Kyushu Institute of Technology

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3