Modulation of Hypoxia-Inducible Factors and Vascular Endothelial Growth Factor Expressions by Superfood Camu-Camu (Myrciaria dubia) Treatment in ARPE-19 and Fetal Human RPE Cells

Author:

Nakai Ayaka123,Lee Deokho12ORCID,Shoda Chiho123,Negishi Kazuno2ORCID,Nakashizuka Hiroyuki3ORCID,Yamagami Satoru3ORCID,Kurihara Toshihide12ORCID

Affiliation:

1. Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan

2. Ophthalmology, Keio University School of Medicine, Tokyo, Japan

3. Ophthalmology, Nihon University School of Medicine, Tokyo, Japan

Abstract

Background. Anti-vascular endothelial growth factor (anti-VEGF) therapy via intravitreal injection is an effective treatment for patients with abnormal ocular neovascularization, such as age-related macular degeneration (AMD) and diabetic macular edema (DME). However, prolonged and frequent anti-VEGF treatment is associated with a risk of local and systemic adverse events, including geographic atrophy, cerebrovascular disease, and death. Furthermore, some patients do not adequately respond to anti-VEGF therapy. Hypoxia-inducible factor (HIF) is a transcription factor that controls the expression of hypoxia-responsive genes involved in angiogenesis, inflammation, and metabolism. The HIF/VEGF pathway plays an important role in neovascularization, and the inhibition of HIF activation could be an effective biomolecular target for neovascular diseases. The demand for disease prevention or treatment using functional foods such as superfoods has increased in recent years. Few reports to date have focused on the antineovascular effects of superfoods in the retinal pigment epithelium (RPE). In light of the growing demand for functional foods, we aimed to find novel HIF inhibitors from superfoods worked in RPE cells, which could be an adjuvant for anti-VEGF therapy. Methods. Seven superfoods were examined to identify novel HIF inhibitor candidates using luciferase assay screening. We used the human RPE cell line ARPE-19 and fetal human RPE (fhRPE) to investigate the biomolecular actions of novel HIF inhibitors using quantitative PCR and western blotting. Results. Under CoCl2-induced pseudohypoxic condition and 1% oxygen hypoxic incubation, camu-camu (Myrciaria dubia) showed HIF inhibitory effects determined by luciferase assays. Camu-camu downregulated HIF-1α and VEGFA mRNA expressions in a concentration-dependent manner. Camu-camu also inhibited HIF-1α protein expressions, and its inhibitory effect was greater than that of vitamin C, which is present at high levels in camu-camu. Conclusion. The camu-camu extract suppressed the activation of HIF and VEGF in RPE cells. This could assist anti-VEGF therapy in patients with abnormal ocular neovascularization.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Publisher

Hindawi Limited

Subject

Ophthalmology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3