Influence of the Three Gorges Reservoir Impoundment on Xiannvshan Fault Activity

Author:

Jiayu Zhang12,Lili Zhang13ORCID,Yaowen Zhang13ORCID,Yunsheng Yao1,Haoran Li1,Yiming Dai1,Renlong Wang1,Caixiong Hu1

Affiliation:

1. Institute of Disaster Prevention, Sanhe 065201, Hebei, China

2. China University of Geosciences, Beijing 100083, China

3. Hebei Key Laboratory of Seismic Dynamics, Sanhe 065201, China

Abstract

Since the initial impoundment and commissioning of the Three Gorges Reservoir in June 2003, seismic activity surrounding the reservoir region has undergone substantial changes. Leveraging geological and hydrogeological data from the Three Gorges Reservoir area, this study statistically analyzes the historical water level and earthquake catalog within the reservoir. By examining the correlation between reservoir water levels and earthquake frequency, the relationship between seismicity along the Xiannvshan fault and water level is analyzed. Additionally, the ArcGIS software is employed to evaluate the spatial pattern of earthquake epicenters during the filling of the Three Gorges Reservoir, with the goal of elucidating the impact of water impoundment at the Three Gorges on the activity along the Xiannvshan fault. The results demonstrate the following. (1) There is a complex process of “continuous loading, permeation and saturation, rebound and rebalancing” in the crust of the reservoir head area during the impoundment of the Three Gorges Reservoir area, and the activity of the Xiannvshan fault is closely related to the reservoir water level. (2) At the 135 m impoundment stage, Xiannvshan fault activity is mainly affected by reservoir water level and is positively correlated with reservoir water level. At the 156 m impoundment stage, reservoir water load is still the main influencing factor of Xiannvshan fault activity, but the permeability of reservoir water is enhanced in this stage. (3) The earthquake epicenters near the northern section of the Xiannvshan fault are clustered during the 175 m experimental impoundment stage. During the continuous loading stage, the reservoir water load is still the main control factor of the Xiannvshan fault, and the seismic activity is significantly enhanced. From November 2010 to November 2013, during the permeation and saturation stage, the dominant factor of Xiannvshan fault activity changed from reservoir water load to reservoir water infiltration along the Xiannvshan fault. The period from 2013.11 to 2014.5 was a vertical rebound stage, and the infiltration effect of reservoir water had a more significant impact on Xiannvshan fault activities.

Funder

Innovation and Entrepreneurship Projects for College Students

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3