Visual Experience-Based Question Answering with Complex Multimodal Environments

Author:

Kim Incheol1ORCID

Affiliation:

1. Department of Computer Science, Kyonggi University, Suwon-si 16227, Republic of Korea

Abstract

This paper proposes a novel visual experience-based question answering problem (VEQA) and the corresponding dataset for embodied intelligence research that requires an agent to do actions, understand 3D scenes from successive partial input images, and answer natural language questions about its visual experiences in real time. Unlike the conventional visual question answering (VQA), the VEQA problem assumes both partial observability and dynamics of a complex multimodal environment. To address this VEQA problem, we propose a hybrid visual question answering system, VQAS, integrating a deep neural network-based scene graph generation model and a rule-based knowledge reasoning system. The proposed system can generate more accurate scene graphs for dynamic environments with some uncertainty. Moreover, it can answer complex questions through knowledge reasoning with rich background knowledge. Results of experiments using a photo-realistic 3D simulated environment, AI2-THOR, and the VEQA benchmark dataset prove the high performance of the proposed system.

Funder

Kyonggi University

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3