Analysis of the Mechanism of Maslinic Acid on Papillary Thyroid Carcinoma Based on RNA-Seq Technology

Author:

Li Rong1ORCID,Zhang Yanjiao2,Xiang Runqing3,Lin Aihe1,Xia Zongxiao1ORCID,Long Xiaomei1,Guo Shuang1,Fan Yuan14ORCID,Chen Zukun14ORCID

Affiliation:

1. Yunnan University of Chinese Medicine, Kunming 650500, Yunnan, China

2. Yunnan Union of Medicinal Herbs Cultivation, Kunming 650500, Yunnan, China

3. Haiyuan College, Kunming Medical University, Kunming 651700, Yunnan, China

4. The Second Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming 650216, Yunnan, China

Abstract

Objective. This study analyzed gene sequence changes in the thyroid papillary carcinoma (PTC) cell line TPC-1 treated with the natural compound maslinic acid (MA) through RNA-sequencing (RNA-seq) and identified the necessary genes to provide a basis for the study of the molecular mechanism of action of MA in PTC treatment. Methods. RNA-seq technology was used to detect genetic differences between the normal cell group (Nthy-ori 3-1) and the TPC-1 cell group (N vs T). Then, gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, Venn diagram analysis of shared genes, and protein–protein interaction (PPI) network analysis were used to analyze the therapeutic effect of the MA on TPC-1 cells. Real-time quantitative PCR (qRT-PCR) was used to verify six key genes. Results. GO and KEGG analyses showed that four crucial signaling pathways are related to TPC development: cytoplasmic molecule (cell adhesion molecules), neuroactive ligand–receptor interaction, tumor transcriptional disorder, and cytokine–cytokine interaction. The Venn diagram revealed 434 genes were shared between the MA vs T-group and 387 genes were shared between the MATH vs T and N vs T groups. PPI and ClueGO showed that NLRP3, SERPINE1, CD74, EDN1, HMOX1, and CXCL1 genes were significantly associated with PTC, while CXCL1, HMOX1, and other factors were mainly involved in the cytokine–cytokine interaction. The qRT-PCR results showed that the expression of NLRP3, EDN1, HMOX1, and CXCL1 genes was significantly upregulated in the TPC-1 group but significantly downregulated after MA treatment ( p < 0.01 ). SERPINE1 and CD74 genes were not expressed in TPC-1 cells, whereas they were significantly upregulated after MA treatment ( p < 0.01 ). Conclusions. This present study proves for the first time that MA can treat PTC, and the preliminary identification of key genes and rich signal transduction pathways provides potential biomarkers. It also provides potential biomarkers for the treatment of PTC with the natural compound MA and preliminarily discusses the therapeutic mechanism of action of MA against PTC, which is helpful for the further diagnosis and treatment of PTC patients.

Funder

Key Laboratory Project of Colleges and Universities in Yunnan Province

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3