Noise-Resistant Video Channel Identification

Author:

Wang Mingkai1ORCID,Xie Zengkun2,Tang Xiangdong1,Chen Fei1ORCID

Affiliation:

1. College of Computer Science & Technology, Qingdao University, Qingdao, China

2. Department of electrical and new energy engineering, Yantai Engineering &Technology College, Yantai, China

Abstract

As the video streaming traffic grows exponentially nowadays, variable bitrate (VBR) encoding has been widely utilized by modern live video streaming service providers, such as YouTube, TikTok, and Twitch. However, video bitrate can be a delicate fingerprint of the video streaming, leading to risks of privacy leakage. There are several studies that attempt to eavesdrop the privacy from encrypted video streaming, but most of them presume strict requirements on the implementation environments and have great limitations when noise interference exists. Actually, the video traffic from the multimedia edge server is distinct from interapplication traffic flows due to device customization and can be identified even if there are noise interferences or the victim in a weak network condition. In this paper, a video traffic identification method is proposed to identify the encrypted video streaming from multimedia edge server under the interference of irrelevant traffic flows. Initially, we use an interapplication filter to identify the traffic from the edge server. Then, a longest-common-subsequence (LCS)-based method is developed for similarity matching to resist the noise interference from unpredictable burst traffic and network environment variations. In order to evaluate the system performance, we setup the prototype system with an AWS EC2 server and a raspberry pi device, then utilize the real-world trace data for pushing movies to victims. The experimental results show that the accuracy of our proposed strategy can reach 89.1% within 140 seconds eavesdropping even mixed with 14% noise interference.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Reference33 articles.

1. Statistic Social Media & User-Generated Content,2021

2. Mobile Edge Computing: A Survey on Architecture and Computation Offloading

3. A Mobile Edge Computing-based architecture for improved adaptive HTTP video delivery

4. Devices that tell on you: privacy trends in consumer ubiquitous computing;T. S. Saponas

5. Beauty and the burst: remote identification of encrypted video streams;R. Schuster

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3