A Multiobjective Multiproduct Mathematical Modeling for Green Supply Chain considering Location-Routing Decisions

Author:

Zarean Dowlat Abadi Javad1ORCID,Iraj Mohammad2,Bagheri Ensieh3,RabieiPakdeh Zeynab4,Dehghani Tafti Mohammad Reza5

Affiliation:

1. Department of Systems and Industrial Engineering, Tarbiat Modares University, Tehran, Iran

2. Department of Industrial Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran

3. Master of Industrial Management, Esfahan University, Esfahan, Iran

4. Department of Public Administration, Faculty of Management and Accounting, Allameh Tabataba’i University, Tehran, Iran

5. Department of Industrial Engineering, Science & Arts University, Yazd, Iran

Abstract

Global warming and environmental pollution are concepts that are more or less encountered in the news and newspapers today. Protecting the environment is crucial to the survival of humanity and the many plant and animal species that inhabit the planet. Lack of control of greenhouse gases can increase the average surface temperature and lead to floods and serious damage in the near future. On the other hand, overproduction of plastics by factories can lead to environmental pollution and the destruction of many food cycles on Earth. In this study, in order to sustainability integrate issues in supply chain network design decisions, a multiobjective optimization model is presented, which is a two-level routing location problem and optimizes economic and environmental goals. The first level is decisions related to the selection of operating facilities from a set of potential facilities (manufacturers and distribution centers), and the second level is related to determining the number of products from distribution centers to retailers and from manufacturers to distribution centers. The objective function is also of the minimization type, which is related to minimizing fixed and variable costs, and minimizing the environmental effects of the whole chain, which includes reducing the costs of greenhouse gas and carbon emissions.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference17 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3