Intelligent Image Diagnosis of Pneumoconiosis Based on Wavelet Transform-Derived Texture Features

Author:

Wang Zichen1ORCID,Hu Maoneng1ORCID,Zeng Min1ORCID,Wang Guoliang1ORCID

Affiliation:

1. Department of Imaging, The Third Clinical College of Hefei of Anhui Medical University, The Third People’s Hospital of Hefei, Hefei 230022, China

Abstract

Objective. Early diagnosis and treatment of occupational pneumoconiosis can delay the development of the disease. This study is aimed at investigating the intelligent diagnosis of occupational pneumoconiosis by wavelet transform-derived entropy. Method. From June 2013 to June 2020, the high KV digital radiographs (DR) and computed tomography (CT) images from a total of 60 patients with occupational pneumoconiosis in our department were selected. The wavelet transform-derived texture features were extracted from all images, and the decision tree was used for feature selection. The support vector machines (SVM) with three kernel functions were selected to classify the two kinds of images, and their diagnostic efficiency was compared. Result. After eight times of wavelet decomposition, eight wavelet entropy texture features (feature set) were extracted, and six were selected to form the feature subset. The classification effect of linear kernel function SVM is better than those of other functions, with an accuracy of 84.2%. The diagnostic values of DR and CT for occupational pneumoconiosis were the same ( kappa = 0.737 , P < 0.001 ). The detection rate of CT for stage I of occupational pneumoconiosis was significantly higher than that of DR ( P = 0.031 ). Conclusion. It is helpful to improve the early diagnosis level of pneumoconiosis by using SVM to make an intelligent diagnosis based on the wavelet entropy.

Funder

Hefei Independent Innovation Policy “Loan to Supplement” Fund Project

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3