Marine Shale Gas Occurrence and Its Influencing Factors: A Case Study from the Wufeng-Longmaxi Formation, Northwestern Guizhou, China

Author:

Cao Taotao12ORCID,Liu Hu34ORCID,Pan Anyang5,Deng Mo5,Cao Qinggu5,Yu Ye1,Huang Yanran1,Xiao Zhenghui2

Affiliation:

1. School of Earth Sciences and Spatial Information Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China

2. Department of Geology, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China

3. Shale Gas Evaluation and Exploitation Key Laboratory of Sichuan Province, Chengdu 600091, China

4. Technology Innovation Center of Shale Gas Exploration and Development in Complex Structural Areas, MNR, Chengdu 600091, China

5. Wuxi Research Institute of Petroleum Geology, Petroleum Exploration and Production Research Institute, SINOPEC, Wuxi, Jiangsu 214126, China

Abstract

Organic-rich shales were found in the Ordovician to Silurian Wufeng-Longmaxi Formation in northwestern Guizhou province, China, which has high shale gas content revealed by field measurement. Shale gas occurrence, free gas/sorbed gas ratio, and their influencing factors are crucial for shale gas exploitation strategy. Results indicated that the Wufeng-Longmaxi shales are dominated by type I kerogen, with total organic carbon (TOC) and equivalent vitrinite reflectance (eqvRo) of 0.77%–6.98% and 2.37%–2.53%, respectively. The total porosity and permeability are in the range of 1.23%–8.43% and 3 × 10 4 2.23 × 10 1  mD, respectively. FE-SEM observation and correlation analysis show shale porosity is dominated by organic matter (OM) pores, followed by interparticle (interP) pores related to brittle minerals. CH4, derived from oil cracking, is the main component of shale gas, but its proportion is lower than that in Fuling and Weiyuan areas, probably due to the weak preservation condition. Desorption gas and lost gas determined by in situ desorption test are 0.42–1.54 cm3/g and 1.9–7.14 cm3/g, respectively, and Langmuir volume ( V L ) from isothermal adsorption experiment is 1.63–4.78 cm3/g. Shale gas content is positively correlated with micropore volume, mesopore volume and TOC content but negatively correlated with macropore volume and clay mineral content, indicating that methane is preferentially stored in micropores (<2 nm) and mesopores (2–50 nm) related to OMs. By comparing actual total gas content with theoretical gas content, shale gas is considered to exist primarily in sorbed state, and the free gas proportion can increase with increased TOC content, due to that OM pores with larger sizes are also main space for free gas. Combined with the two methods, it can result in accurate calculations of shale gas reserves and free/sorbed gas ratio. Based on this understanding, a model of shale gas occurrence was proposed, which can provide a reference for shale gas exploitation in normal pressure areas.

Funder

Open Fund of State Key Laboratory of Organic Geochemistry

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3