Detection of Middlebox-Based Attacks in Healthcare Internet of Things Using Multiple Machine Learning Models

Author:

Al Abdulwahid Abdulwahid1ORCID

Affiliation:

1. Department of Computer and Information Technology, Jubail Industrial College, Royal Commission for Jubail and Yanbu, Jubail, Saudi Arabia

Abstract

The huge number of network traffic data, the abundance of available network features, and the diversity of cyber-attack patterns mean that intrusion detection remains difficult even though many earlier efforts have succeeded in building the Internet of Healthcare Things (IoHT). The implementation of an effective algorithm to filter out most of the probable outliers of Round Trip Time (RTT) of packets recorded in the Internet environment is urgently required. Congestion and interference in networks can arise when numerous biosensors in an IoHT system all attempt to communicate at once. Internet of Health Things networks are susceptible to both intra- and internetwork interference. In this research, the Server-Side Includes (SSI) attack is a key issue because it allows for network compromise as part of Internal Attacks. Despite recent advancements, SSI detection remains difficult due to the vast amounts of network traffic data, the abundance of network features, and the diversity of cyber-attack patterns (DDoS, DoS, Satan, spoofing, etc.). With the help of sensors, physiological data may be collected and sent to distant servers, where they can be analyzed in real time by doctors to help them catch diseases in their earliest stages. This is made possible by the Internet of medical things (IoMT). Wireless data transfer, however, leaves it vulnerable to hackers, especially if the data being transferred are particularly private or sensitive. Security measures designed for devices with more storage space and processing power will not work on those with less. However, machine learning for intrusion detection can give a tailored security response to the needs of IoMT systems. For SSI detection, current methods are either inefficient because of the large number of packets that need to be caught and analyzed or unsuccessful because of outlier values in the RTTs obtained from the captured TCP packets. To the same end, “downstream detection” refers to the process of calculating the total length of all connections made after a certain point. As a means of improving the SSI detection algorithm’s throughput in a network environment, packet RTT outliers will be eliminated. Flow records are used as inputs by flow-based NIDS to determine whether or not a given flow is malicious. In order to detect middlebox-based attacks from two Medical Health IoT datasets, this paper proposes a unique architecture of explainable neural networks (XNN). The model’s accuracy in classifying attacks in dataset 1 of the IoHT is 99.7%t, besides achieving 99.4% accuracy in categorising attacks on IoHT dataset 2.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3