Evaluation of the American Approach for Detecting Plan Irregularity

Author:

Alecci V.1ORCID,De Stefano M.1,Galassi S.1,Lapi M.2,Orlando M.2

Affiliation:

1. Department of Architecture, University of Florence, Piazza Brunelleschi 6, 50121 Florence, Italy

2. Department of Civil and Environmental Engineering, University of Florence, Via di Santa Marta 3, 50139 Florence, Italy

Abstract

The European seismic code 8 (Eurocode 8) classifies buildings as planwise regular according to four criteria which are mostly qualitative and a fifth one, which is based on parameters such as stiffness, eccentricity, and torsional radius, that can be only approximately defined for multistory buildings. Therefore, such plan-regularity criteria are in need of improvement. ASCE seismic code, according to a different criterion, considers plan (or “torsional”) irregularity in a building when the maximum story drift, at one end of the structure, exceeds more than 1.2 times the average of the story drifts at the two ends of the structure under equivalent static analysis. Nevertheless, both the ASCE approach and the threshold value of 1.2 need to be supported by adequate background studies, based also on nonlinear seismic analysis. In this paper, a numerical analysis is carried out, by studying the seismic response of an existing R/C school building taken as the reference structure. Linear static analysis is developed by progressively shifting the centre of mass, until the ratio between the maximum lateral displacement of the floor at the level is considered and the average of the horizontal displacements at extreme positions of the floor at the same level matches and even exceeds the value of 1.2. Then, nonlinear dynamic analyses are carried out to check the corresponding level of response irregularity in terms of uneven plan distribution of deformation and displacement demands and performance parameters. The above comparison leads to check the suitability of the ASCE approach and, in particular, of the threshold value of 1.2 for identifying buildings plan irregularity.

Funder

Progetto Esecutivo Convenzione

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3