An Efficient Hybrid Approach of Finite Element Method, Artificial Neural Network-Based Multiobjective Genetic Algorithm for Computational Optimization of a Linear Compliant Mechanism of Nanoindentation Tester

Author:

Chau Ngoc Le1,Dao Thanh-Phong23ORCID,Nguyen Van Thanh Tien1

Affiliation:

1. Faculty of Mechanical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam

2. Division of Computational Mechatronics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam

3. Faculty of Electrical & Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam

Abstract

This paper proposes a new evolutionary multiobjective optimization technique for a linear compliant mechanism of nanoindentation tester. The mechanism design is inspired by the elastic deformation of flexure hinge. To improve overall static performances, a multiobjective optimization design was carried out. An efficient hybrid optimization approach of central composite design (CDD), finite element method (FEM), artificial neural network (ANN), and multiobjective genetic algorithm (MOGA) is developed to solve the optimization problem. In this procedure, the CDD is used to lay out the experimental data. The FEM is developed to retrieve the quality performances. And then, the ANN is developed as black box to call the pseudo-objective functions. Unlike previous studies on multiobjective evolutionary algorithms, most of which generating only one Pareto-optimal solution, this proposed approach can generate more than three Pareto-optimal solutions. Based on the user’s real-work problem, one of the best optimal solutions is chosen. The results showed that the optimal results were found at the displacement of 330.68 μm, stress of 140.65 MPa, and safety factor of 3.6. The statistical analysis is conducted to investigate the behavior of the MOGA. The sensitivity analysis was carried out to determine the significant contribution of each factor. The results revealed that the lengths and thickness almost significantly affect both responses. It confirms that the proposed hybrid optimization approach gains high robustness and effectiveness with flexible decision maker rules to solve complex optimization engineering problems.

Funder

Vietnam National Foundation for Science and Technology Development (NAFOSTED)

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3