A New Mathematical Model for Cell Layout Problem considering Rotation of Unequal Dimensions of Cells and Machines

Author:

Alamiparvin Raheleh1ORCID,Mehdizadeh Esmaeil1ORCID,Soleimani Hamed1ORCID

Affiliation:

1. Department of Industrial Engineering, Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran

Abstract

One of the main concepts in group technology (GT) is the cellular manufacturing system (CMS) with three main problems of cell formation (CF), cell layout (CL), and cell scheduling (CS). This paper studies the cell layout problem (CLP), aiming to find the optimal layout of machines within each cell (intracellular layout) and the optimal layout of cells in each workshop (intercellular layout). To adapt to reality, the dimensions of the cells and machines (inside each cell) were considered unequal, and also the cells and machines could rotate. We believe that a cellular layout that assumes unequal dimensions of the cells and machines can be used for batch production. This kind of production has a wide variety of low to medium demand. Furthermore, a cellular layout can be applied in CMSs and also in noncontinuous industries that have a job shop layout. Our main contribution is considering the possibility of rotating the cells and machines inside the cells. For this purpose, a mixed nonlinear programming model was developed to solve the CLP with the minimum cost of intracellular and intercellular material flows. The proposed nonlinear model was first converted into a linear model, and then a problem was generated and solved with GAMS software to validate the resulting linear model. This model finds the best layout of cells within the workshop and the best layout of machines inside each cell. Then, because of the NP-hardness of the CLP and the fact that even exact methods cannot solve large-scale examples in an acceptable computational time, an imperialist competitive algorithm (ICA) was designed and used to solve the problem. To evaluate the efficiency of the proposed algorithm, its numerical results in small dimensions were compared with the results of GAMS software. In large dimensions, 30 random problems were created, and the results of ICA were compared with the results of the particle swarm optimization (PSO) algorithm and genetic algorithm (GA). Finally, the parameters of the three meta-heuristic algorithms were set by the Taguchi method. Numerical results indicated that ICA was superior to both the PSO algorithm and GA. It could also achieve efficient solutions in a shorter computational time.

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3