Simultaneous Adsorption and Photocatalytic Degradation of Malachite Green Using Electrospun P(3HB)-TiO2Nanocomposite Fibers and Films

Author:

Sridewi Nanthini1,Lee Yan-Fen1,Sudesh Kumar1

Affiliation:

1. Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia

Abstract

This paper demonstrated the applicability of electrospun P(3HB) film as a dye adsorbent agent. Malachite green (MG) was used as the model dye in this study. Interestingly, the electrospun P(3HB) film exhibited excellent dye adsorption capacity whereby 78% of dye was adsorbed from a 30 μM solution of MG. The film was further improvised by incorporating titanium dioxide photocatalysts to form a dual dye treatment system employing adsorption and photocatalytic degradation techniques. The resultant electrospun P(3HB)-50 wt%   TiO2was capable of completely decolorizing MG in 45 min under solar irradiation, which corresponded to 58.7%  COD removal. The fully decolorized MG solution also proved to be nontoxic againstA. aegyptimosquito larvae. The reapplicability of this film was possible as it induced a decolorization rate of 98% or more at every usage for ten consequent usages. EDX analysis suggested that there were no significant changes in the concentration of titanium (Ti) in the film before and after ten times of usage. The concentration of Ti in cast P(3HB)-50 wt%  TiO2film was found to decrease significantly during the repeated usage. The electrospun P(3HB)-50 wt%  TiO2film has high potency as an efficient and inexpensive yet simple method for the dye effluent decolorization, degradation, and detoxification.

Funder

Ministry of Science, Technology and Innovation (MOSTI)

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3