A New State Estimation Method with Radar Measurement Missing

Author:

Wang Hongjian1ORCID,Li Cun2ORCID,Wang Ying1,Li Qing1,Ban Xicheng1

Affiliation:

1. Automation College, Harbin Engineering University, China

2. China Electronics Technology Instruments Co. Ltd., China

Abstract

This paper describes a method that addresses the transient loss of observations in sea surface target state estimations. A six degrees of freedom swing platform fixed with a MiniRadaScan is used to simulate the loss of observations. The state transition model based on the historical observation data fit prediction is designed because the existing state estimation method can only use the system model prediction while the observation is missing. An observation data sliding window width adaptive adjustment strategy is proposed that can improve the fitting accuracy of the state transition model. To solve the problem where the weight value of the Gaussian components of the Gaussian mixture filter is not changed in the time update stage while the observation is missing, an adaptive adjustment strategy for the weight is proposed based on the Chapman-Kolmogorov equation, which can improve the estimation precision under the conditions of the missing observation. The simulation test demonstrates the proposed accuracy and real-time performance of the proposed algorithm.

Funder

Natural Science Foundation of Heilongjiang Province

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3