Substrate Temperature-Dependent Structural, Optical, and Electrical Properties of Thermochromic VO2(M) Nanostructured Films Grown by a One-Step Pulsed Laser Deposition Process on Smooth Quartz Substrates

Author:

Hendaoui Ali1ORCID

Affiliation:

1. Physics Department, College of Science and General Studies, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia

Abstract

Thermochromic M-phase vanadium dioxide VO2(M) films with different morphologies have been grown directly on smooth fused quartz substrates using low deposition rate pulsed laser deposition without posttreatment. When the substrate temperature was increased in the range 450°C–750°C, better (011) texturization of VO2(M) films was observed along with an enhancement of their crystallinity. Morphology evolved from small-grained and densely packed VO2(M) grains at 450°C to less packed micro/nanowires at 750°C. Mechanisms behind the crystallinity/morphology evolution were discussed and correlated with the effect of the temperature on the diffusion of the adatoms as well as on the V5+ valence states content in VO2(M) films. Resistivity measurements as a function of temperature revealed that the insulator-to-metal transition features of VO2(M) films (i.e., transition temperature (TIMT), resistivity variation (ΔR), hysteresis width (ΔH), and transition sharpness (ΔT)) are strongly dependent on the processing temperature. In terms of optical properties, it was found that the open (i.e., porous) structure of the films achieved at high temperature induced an improvement of their luminous transmittance. Simultaneously, the enhancement of the films crystallinity with the temperature resulted in better IR modulation ability. The present contribution provides a one-step process to control the morphology of VO2(M) films grown on smooth quartz substrates for applications as switches, memory devices, and smart windows.

Funder

Alfaisal University Office of Research and Graduate Studies

Publisher

Hindawi Limited

Subject

Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3