Mixed Linear Programming for Charging Vehicle Scheduling in Large-Scale Rechargeable WSNs

Author:

Prakash P. Suman1ORCID,Janardhan M.1ORCID,Sreenivasulu K.2ORCID,Saheb Shaik Imam3,Neeha Shaik4ORCID,Bhavsingh M.2ORCID

Affiliation:

1. Department of Internet of Things, G. Pullaiah College of Engineering and Technology, Kurnool, Andhra Pradesh, India

2. Department of Computer Science & Engineering, G. Pullaiah College of Engineering and Technology, Kurnool, Andhra Pradesh, India

3. Department of Computer Science & Engineering, Lords Institute of Engineering and Technology, Hyderabad, Telangana, India

4. Department Computer Science Engineering (Artificial Intelligence and Machine Learning), Lords Institute of Engineering and Technology, Hyderabad, Telangana, India

Abstract

Because wireless sensor networks (WSNs) have low-constrained batteries, optimizing the network lifetime is a primary challenge. Rechargeable batteries are a solution to prolong the lifetime of a sensor node instead of restricting their functionalities to save energy. Wireless energy transmitters have the added benefit of providing a charger for the batteries of the sensor nodes in the WSN. However, scheduling one or more charging vehicles efficiently to recharge multiple sensor nodes is challenging. In this context, this paper provides a solution to recharge the sensor nodes using charging vehicle scheduling in WSNs through a mixed linear programming approach. Initially, we identify a heuristic value of each sensor node based on their residual energy, distance from a charging vehicle, available data packets, and other metrics. Further, a set of nodes is recharged by identifying the best charging vehicle to prolong their lifetimes, as well as the lifetime of the network as a whole. We simulated the proposed approach using a Python simulator, tested using different performance metrics, and compared using the recently published works. We notice the superior performance of the proposed work under various metrics in time and query-driven WSNs.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3